Advanced Python-based AI platform for data analysis and machine learning
Advanced ML algorithms including LSTM, GRU, Transformer models for time series forecasting, anomaly detection with Isolation Forest and One-Class SVM, and deep learning with TensorFlow.
Live data processing with WebSocket integration, real-time dashboards with automatic updates, and streaming analytics for continuous monitoring.
3D scatter plots, animated time series, correlation heatmaps, and statistical distributions with Plotly and Matplotlib integration.
Asynchronous FastAPI backend, Redis caching, database optimization, and Docker containerization for scalable deployment.
from ml.models.forecasting import TimeSeriesPredictor
# Initialize LSTM predictor
predictor = TimeSeriesPredictor(
model_type="lstm",
sequence_length=60,
forecast_horizon=30
)
# Train on historical data
metrics = predictor.fit(historical_data, target_column="sales")
# Generate predictions
future_predictions = predictor.predict(data, horizon=30)
# Visualize results with confidence intervals
predictor.plot_forecast(data, future_predictions)
from ml.models.anomaly_detection import RealTimeAnomalyDetector
# Configure anomaly detector
detector = RealTimeAnomalyDetector(
method=AnomalyMethod.ISOLATION_FOREST,
contamination=0.05
)
# Train on normal data
detector.fit(training_data)
# Real-time detection
async def monitor_stream():
async for data_point in data_stream:
result = detector.detect(data_point)
if result.is_anomaly:
await send_alert(result)
asyncio.run(monitor_stream())
from fastapi import FastAPI, BackgroundTasks
from ml.model_registry import ModelRegistry
app = FastAPI(title="AI Data Platform")
registry = ModelRegistry()
@app.post("/api/v1/ml/forecast")
async def create_forecast(request: ForecastRequest):
# Train model asynchronously
predictor = TimeSeriesPredictor(request.model_type)
metrics = predictor.fit(pd.DataFrame(request.data))
# Generate predictions
predictions = predictor.predict(horizon=30)
# Register model for future use
model_id = f"forecast_{datetime.now()}"
await registry.register_model(model_id, predictor)
return ForecastResponse(
predictions=predictions['predictions'],
confidence_intervals=predictions['confidence_intervals'],
model_id=model_id
)
Modern Python with type hints
Deep learning framework
High-performance API
Robust database
Interactive visualizations
Containerization
Get the source code from the repository
git clone <repository-url>
cd ai-data-platform
Set up Python environment and install packages
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
Start the full application stack
docker-compose up -d
Open your browser and navigate to:
Experience the AI Data Platform in action with interactive demonstrations