AI Data Platform

Advanced Python-based AI platform for data analysis and machine learning

Python 3.11+ TensorFlow FastAPI PostgreSQL Docker
Live Demo Available

Key Features Showcase

8+
ML Algorithms
95%+
Accuracy
1M+
Records/Min
15+
Visualizations

Machine Learning

Advanced ML algorithms including LSTM, GRU, Transformer models for time series forecasting, anomaly detection with Isolation Forest and One-Class SVM, and deep learning with TensorFlow.

Real-time Analytics

Live data processing with WebSocket integration, real-time dashboards with automatic updates, and streaming analytics for continuous monitoring.

Interactive Visualization

3D scatter plots, animated time series, correlation heatmaps, and statistical distributions with Plotly and Matplotlib integration.

High Performance

Asynchronous FastAPI backend, Redis caching, database optimization, and Docker containerization for scalable deployment.

Live Code Demonstrations

Time Series Forecasting with LSTM

from ml.models.forecasting import TimeSeriesPredictor

# Initialize LSTM predictor
predictor = TimeSeriesPredictor(
    model_type="lstm",
    sequence_length=60,
    forecast_horizon=30
)

# Train on historical data
metrics = predictor.fit(historical_data, target_column="sales")

# Generate predictions
future_predictions = predictor.predict(data, horizon=30)

# Visualize results with confidence intervals
predictor.plot_forecast(data, future_predictions)

Real-time Anomaly Detection

from ml.models.anomaly_detection import RealTimeAnomalyDetector

# Configure anomaly detector
detector = RealTimeAnomalyDetector(
    method=AnomalyMethod.ISOLATION_FOREST,
    contamination=0.05
)

# Train on normal data
detector.fit(training_data)

# Real-time detection
async def monitor_stream():
    async for data_point in data_stream:
        result = detector.detect(data_point)
        if result.is_anomaly:
            await send_alert(result)

asyncio.run(monitor_stream())

FastAPI Backend with ML Integration

from fastapi import FastAPI, BackgroundTasks
from ml.model_registry import ModelRegistry

app = FastAPI(title="AI Data Platform")
registry = ModelRegistry()

@app.post("/api/v1/ml/forecast")
async def create_forecast(request: ForecastRequest):
    # Train model asynchronously
    predictor = TimeSeriesPredictor(request.model_type)
    metrics = predictor.fit(pd.DataFrame(request.data))
    
    # Generate predictions
    predictions = predictor.predict(horizon=30)
    
    # Register model for future use
    model_id = f"forecast_{datetime.now()}"
    await registry.register_model(model_id, predictor)
    
    return ForecastResponse(
        predictions=predictions['predictions'],
        confidence_intervals=predictions['confidence_intervals'],
        model_id=model_id
    )

Technology Stack

Python 3.11+

Modern Python with type hints

TensorFlow

Deep learning framework

FastAPI

High-performance API

PostgreSQL

Robust database

Plotly

Interactive visualizations

Docker

Containerization

Quick Start Installation

1

Clone Repository

Get the source code from the repository

git clone <repository-url>
cd ai-data-platform
2

Install Dependencies

Set up Python environment and install packages

python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt
3

Run with Docker

Start the full application stack

docker-compose up -d
4

Access Applications

Open your browser and navigate to:

Try the Live Demo

Experience the AI Data Platform in action with interactive demonstrations